  NMR-Spectroscopy in Polymer Science

Introduction and Overview

The increase of computer power and the development of sophisticated pulse-programs during the recent decades has made the solid-state NMR one of the most tools in polymer science making incredible use of the facilities the Hamiltonean offers. The Nobel-laureate R. R. Ernst once called the potential “close to magic”. Solid-state NMR is unprecedented in its structural specificity using the innocuous, definite label present in all polymers.

Interactions in the solid state result in a significant line broadening of the NMR-spectra in the solid state, at the same time, however, there are many information hidden by this effect. Many experimental techniques on the hardware as well as on the software side have been developed to reduce or eliminate these interactions to obtain narrow resonance-lines and spectra close to solution spectra
. On the other side interactions like the dipolar coupling (DC) or the chemical shift anisotropy (CSA) are exactly the sources of information about the conditions in the solid state. The methods which have been developed to extract these informations from the NMR-experiments are e. g.: multi-dimensional spectroscopy (2D-and 3D-techniques) that allow to correlate a structural parameter (chemical shift) with parameters that carry information about dynamic and order (CSA)
, 
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The information which can be extracted from NMR experiments ranges from rather qualitative data such as connectivities of atoms or groups of atoms and the magnetic equivalence of atoms in a compound to quantitative structural values like the J-coupling constant and cross-relaxation rates which provide knowledge about local conformation, distances, bond angle and even local mobility.


[image: image2.wmf]Material 

properties

of 

polymers

:

•

Chemical structure

•

Configuration

•

Conformation

•

Physical Structure

•

Dynamics

in 

the 

liquid 

and 

in 

the

solid 

state

2


[image: image3.wmf]NMR 

can provide information about

:

•

Polymers in Solution

•

The microstucture 

of polymer 

chains

•

Resonance assignement

•

regioisomerism

•

Stereochemical configuration

•

Geometric isomerism

•

Isomerism 

in diene 

polymers

•

Asymmetric centres 

in 

the main chain

•

Branching 

and 

cross

-

linking

•

End 

groups

•

Configurational statistics

•

Copolymerization sequences

•

Chain 

conformation 

in 

solution

•

Intermolecular association

3


[image: image4.wmf]Characterization

in

the

Solid State

Chain

conformation

in

the

solid

state

Solid

-

solid

transitions

Organization

in

the

solid

state

In multi

-

phase polymers

Orientation

Imaging

Dynamics

of Polymers in 

the 

Solid State

Semicristalline polymers

Amorphous polymers

Polymer Systems

Polymer

blends

and

miscibility

Multiphase systems

4


[image: image5.wmf]10

-

12             

10

-

10

10

-

8

10

-

6

10

4                    

10

2                         

10

0

T

1

, T

2

, NOE 

2D 

exchange             

correlation times 

[s]

2

H 

lineshape

CSA 

lineshape

dipolar lineshape

T

1

r

2

H echo

dynamic range

measured by

different NMR

-

techniques

5

The development of NMR-spectroscopy comprises 3 major steps:

· The development of high-field superconducting magnets.

· The introduction of fast Fourier transform methods
.
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These have led to an increased sensitivity even to nuclei not exactly abundant but important (such as 13C or 15N) and the ability to manipulate nuclear spins though the pulsed Fourier Transform techniques.

· The development of multi-dimensional techniques by expanding the original Fourier transform concept, first proposed and implemented by Jeener
 and Ernst
 for 2D, later by Griesinger3 for a 3rd dimension and NMR-imaging, see for example Blümler and Blümich
. For a general review see also Becker et al.
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The first techniques – slow passage (continuous wave) – revealed the major drawback of NMR-spectroscopy, that is its low sensitivity caused by the low quantum energies of the transitions of about 10-6 eV (1 eV(= 1.60218(10-19J). Optimisation of the sensitivity could be accomplished in slow passage experiments by high-field spectroscopy
, 
; the use of large volumes; magnetisation enhancement by the hetero nuclear Overhauser effect
, 
; cross-polarization in solids
, 
, 
 and in liquids
, 
, 
, 
, 
; coherence transfer by rf-pulses in solids12-14 and in liquids15-19; indirect resonance detection by electron-nuclear double resonance (ENDOR)
, internuclear double resonance (INDOR)
 cross-polarization in the solid12, 
, 
, 
 and in the liquid state15, 16; coherence transfer by rf-pulses
, 
, 
; shortening of the longitudinal relaxation by paramagnetic substances
;flowing sample techniques to circumvent saturation effects
, 
.


Since there is a basic correlation between the sensitivity s and the measuring time t: s ( (t accumulation of spectra and averaging are advantageous
, 
, 
, 
, 
. Slow scans reduce the low-frequency noise35. Fast scans increase the average magnetization. The draw-back of fast scan accumulation, however, is that a distortion of the line shape can lead to a decreasing resolution
, 
. Deconvolution can (at least partially) overcome this problem and is also successfully used in correlation spectroscopy and rapid scan FT-spectroscopy
, 
, 
. Rapid scan spectroscopy can approach the sensitivity of FT-techniques and has the advantage that selected spectral regions can be scanned. 


The development of Pulse-FT-NMR provided a simultaneous, multi-frequency source of excitation
, 
, 
, 
. The free-induction decay (FID) is the pulse response of the sample and forms a Fourier couple with the spectrum
. With this technique  - which was only possible because of the availability of fast, low-priced computers and fast Fourier-transform algorithms - a big step forward was done in sensitivity by recording the response (FID) of a short excitation pulse36, 
. The disadvantages of the FT-pulse technique are problems with the dynamic range, base-line artefacts, and frequency folding. The inherent advantages of a much higher sensitivity and the absence of peak-shape distortions, however, overcome the disadvantages and have made pulse-FT NMR the preferred NMR technique
, 
, 
. It is applicable in the solid state14 (1.22) for high-resolution spectra in solution47-49, and used in transient processes of spin systems such as relaxation experiments
, 
, 
, 
, 
, the study of diffusion processes
, 
 and chemical reactions
, 
, 
.


What basically is done in modern pulse NMR spectroscopy is that the spin Hamiltonean is modified in a way that allows extracting the desired information. This way spectra can be simplified by eliminating selected interactions such as hetero-or homonuclear dipolar couplings. The information content can be increased by introducing specific, additional perturbations. As examples may serve:

· Magic angle sample spinning to eliminate the anisotropic part of the chemical shifts
, 
, 
, 

· Double-resonance experiments can be used for spin decoupling
, 
, 

· Multiple-pulse methods to remove dipolar couplings between abundant spins in solids14, 
, 
, 
, 

· Spin tickling65, 

Conventional NMR considers the frequency response S(() of a sample. The response function S depends on two variables (1, (2 in a double quantum experiment S((1, (2). The second variable is frequently an (incremented) parameter. This can be used to create a 2-dimensional (2D) spectrum (which in fact is a three dimensional spectrum displayed as a 2D contour plot). 2D spectra were introduced in 1971 as a two-pulse experiment in the time domain
. The general scheme of a 2D-experiment consists of the preparation, the evolution, the mixing and the detection. Two independent magnetizations can evolve (e. g.: 1H and 13C), and the precession coherence is suddenly changed during the mixing period. This can be accomplished by switching the Hamiltonian by one of the many spin-manipulation techniques or through coherence-transfer from one transition to another. The major advantages are:

· Mapping of slow dissipative processes e. g.: cross-relaxation, nuclear Overhauser effects, spin diffusion and slow chemical exchange57-59, 
, 
, 

· Determination of correlations, i. e. scalar or dipolar coupling of nuclei

· Straightening-out the spectral overlaps

· Multiple-quantum transitions of various orders of (forbidden) transitions can be resolved because selection rules can be circumvented
, 
, 
, 
, 
 

Basic Principles


Nuclei with an angular momentum can be characterized by the spin
 quantum number I . If a nuclei then shows a magnetic moment vector ( this is given by

(((= (ħ((I(I+1)

with the z-component 

((z( = (ħIz


When isolated nuclei of the same isotope with a magnetic moment ( are exposed to an external magnetic field B0 most of the spins are oriented parallel with respect to B0, some are not. If I is the nuclear magnetic spin quantum number of the isotope then there are 2I+1 possible orientations, e. g. two orientations (parallel and anti-parallel) if I=1/2 as in 1H or 13C. The distribution of the spin population among the corresponding energy levels is governed by Boltzmann’s distribution law: 

N1 = N0 exp(-(((kb(T)

The difference in potential energy between the two orientations is given by the Planck equation 

(E = h ((0(= ħ((0 =(( (ħ.(B0

This is the basic equation of NMR.

The vector of the magnetic moment ( rotates around the z-axis with the Larmor frequency (0.
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In an NMR-experiment the energy difference can be supplied by radio frequencies, that means in the MHz-range. The orientation of the nuclear spins results in a macroscopic magnetization of the sample. If the sample is exposed to a radiation with the frequency(0 which matches with the energy difference (E (B0) – e.g.: the resonance condition – then (0 is absorbed, and the frequency plot of the absorbed photons shows the NMR-spectrum.

N0, N1 = number of spins in the ground state (0) respectively in the excited state (1)

kb = 1.380 66(10-23 J/K (Boltzmann constant)

h  = 6.626 08(10-34 J(s

ħ = h/2( =  1.054 57(10-34 J(s

(  = magnetogyric ratio

(0= 2(( (angular frequency)

For 1H and a frequency of 100 MHz at room temperature the exponential term is: 

exp(-(((kb(T) ( 1.6 ( 10-5
Assumed 1 mol of spins and only 1.6 (10-5 mol of spins contribute to the magnetization. Although the NMR-technique is a rather insensitive analytical method, this disadvantage is by far over-compensated by the advantages that are provided by the specificity and multiplicity of the information which can be gained from NMR-spectroscopy.

Any influence that affects the local field at a nucleus under observation therefore will be reflected by its resonance frequency: 

· interaction with other magnetic dipoles in the direct vicinity of a nucleus will cause a shift of its resonance line in the spectrum. This is an interaction through the space which decreases with r –3.

· the electron cloud that forms a chemical bond also causes a shift of the resonance frequency (shielding or de-shielding)

Interactions usually broaden the NMR resonance lines of a spectrum. In (non-viscous) liquids these interactions are averaged by rapid isotropic motions of the molecules or molecule parts – in polymers by bond rotations of the backbone and the side-chain or groups. The fast isotropic motions average the interactions to zero or to a single finite value representing the average interaction
. This is no longer valid in the solid state with the crystalline phases, the frozen thermodynamic non-equilibrium glasses, in ordered phases. It is possible to influence these interactions to a great deal by the experimental technique.
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Types of Interactions  

Dipolar Coupling


The magnetic dipoles of the nuclei sense each other through space with a distance law proportional to r-3 for static dipoles and r-6 for rotating dipoles. In 1H-NMR the interaction is mostly among the protons. In 13C-NMR with the low natural abundance of the 13C-isotopes the proximity of another 13C-isotope within reach of dipolar interaction is negligible in most cases, the dipolar interaction with the proptons, however, cannot. Besides the distance of the dipoles their mutual orientation is also of importance. 


The total Hamilton operator is given by the sum of the individual interactions:

( = ( z + ( q + ( dd + ( ( + ( k + ( J
( z  = zeeman interaction with the external magnetic field (constant term)

( q  = quadrupol interaction

( dd = direct dipolar interaction

( (  = magnetic shielding (chemical shift) reflects the chemical environment

( k  = knight shift

( J  = indirect coupling

The different interactions rate usually in the order:

( z  (( ( q  (( ( dd  (( ( ( ( ( k  (( ( J
The operators have to be separated or the other operators have to be eliminated for observation of a (chemical shift) spectrum. ( z is eliminated by comparison with a standard reference sample, usually TMS. ( k is negligible for the present case. In I = ½ systems the contribution of ( q is usually unimportant. Remains ( dd and ( J.   

(dd for the interaction between two nuclei i and j consists of a spin operator and a geometrical part, and in the case of  carbon and hydrogen the dipolar coupling D of a set of (isolated) 13C and 1H spin pairs is given by:

 ( dd = -ħ2 (C(H 
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The result is a double peak. In a real sample, however, the spins are not magnetically isolated and therefore one observes the sum of all couplings in the sample, the powder spectrum (Pake-doublet spectrum) further broadened by additional inhomogeneous broadening. All these interactions produce a 13C-solid state spectrum with line width of about 20 Hz.

The dipolar coupling can be eliminated by making the spin- or the geometrical term zero. The second alternative is accomplished by rotating the sample with the "magic angle" ( = 54.74° with respect to the z-direction, the direction of B0. This can remove weak dipolar interactions. The spin-term can be averaged to zero if the local field of the protons which couples with the 13C can be inverted during ½ of the averaging time. This is accomplished by high-power proton decoupling. At the same time the homonuclear H-H coupling term, which is even stronger than the 1H-13C-coupling, has to be averaged in the same way. 
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Chemical Shift Anisotropy


The chemical environment which strongly influences the local field because the orbitals of the electrons are not of spherical symmetry. and can provide information about the orientational order in the sample. The chemical shift can be represented by a second-rank tensor (vector operator). 

( ( = ħ ( (zz B0
and (zz is the projection of the shift tensor onto the direction of B0. In the case of isotropic averaging (zz(iso) is the observed value of the  chemical shift.
Scalar (Spin-Spin) Coupling


These couplings provide information about the number and identity of the nearest neighbours of a nucleus under observation. They are of great value in 1H-NMR of solutions, for 13C-NMR there is frequently a C-H-decoupling required to make the spectra more transparent. In solid state NMR scalar couplings are of minor value. They have not been resolved for protons, and 1H-13C-couplings are removed with the high-power dipolar decoupling. They can be useful (resolvable) with other I = ½ nuclei.

Diffusion of Small Molecules 


The diffusion of small molecules in a bulk polymer or the self-diffusion of molecules can be determined by pulsed Fourier transform gradient experiments (PFEG-NMR). 
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There are basically two techniques, the Hahn-echo sequence and the stimulated echo pulse sequence available for diffusion measurements
. For the meaning of a spin echo see fig 25(echo). The intensity of the echo signal is recorded and plotted versus the gradient strength.
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The cross-polarization affects the magnetization in z-direction, consequently the Hahn-echo is not affected but the stimulated echo experiment is. Both experiments are influenced by chemical exchange if it is fast enough
. Small molecules can also serve as a probe for segmental mobility in polymers, in particular in copolymers comprising different types of segments82 . An example for the self-diffusion of a water-soluble modified polymer is given in 
. 

Molecular Mobility in Solid Polymers


Many NMR-parameters such as line-shape and relaxation times are sensitive with respect to local motions. The frequency ranges from 10-1Hz to hundreds of MHz so that at temperatures well above the glass transition temperature fast processes can be monitored through the 13C spin-lattice relaxation time T1 and the NOE as well as the slow motions in the glass e. g. through T1(, line-shape analysis, tensorial interactions of the chemical shift anisotropy
.


Above the glass transition segmental reorientations are mostly found to occur as conformational jumps. The spreading of such a local motion along the chain can be described by an auto-correlation function
,
. 


It has been demonstrated
that a combination of high-resolution solid state NMR from different types of experiments with other techniques such as dielectrical and mechanical relaxation can sum up to a precise description of the local dynamics in a glassy polymer system and secondary relaxations can be identified described and attributed to the motion of groups or segments84.

Orientation in Solid Polymer Systems

Comparison of static and rotating solid state spectra at different sample orientation to B0 with a number of different techniques allows the determination of the microscopic chain orientation in macroscopically oriented samples such as fibres, film, frozen liquid crystalline structures etc.
, 
, 
. In contrast to X-ray scattering techniques, NMR is in particular suited to analyse weakly ordered systems. The molecular orientation is usually described in terms of an orientation distribution function
. The order parameter(s) are the moments of the Legendre polynom of the orientation distribution function. The well-known (temperature-dependent) order parameter (s( used to characterize the state of order of a liquid crystal, for example, is the second moment. Wideline-spectra
 can be used as well as the analysis of the spinning side-bands which can be observed in MAS-experiments
, 
. 
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� This again shows the importance of certain coincidences for a particular technological advance. As in the early years of electrical engineering the invention of insulating thermosets came just at the right time to boost this field and later electronics, the development of the highly sophisticated spectroscopic methods are unthinkable without the coincidence of superconductors and fast and cheap computers.


� A quantum mechanical spin can only in a very simple picture be identified with a "nuclear top"


� unfortunately, the averaging is not always isotropic, not even in solution
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		   branching in PE

		   thermal oxidation in PE

		   stereoregularity e.g. PMMA, PP

		   directional isomerism (regio-isomerism: head-tail,…)

		   copolymer structure
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2D-Experiments can be useful:

		for the separation of shifts and scalar couplings in isotropic phase



  in particular in weakly coupled homo-and heteronuclear systems

		in oriented phase, especially in static powders or magic-angle spinning



  samples information can be extracted by separation of dipolar 

  couplings and anisotropic chemical shifts that cannot be obtained (easily)

  from 1D-spectra

		isotropic and anisotropic chemical shift components can be 



  separated in two frequency domains in the solid state
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rf-transmission and

Detection coil (antenna)

laboratory (static) frame:

coordinates x, y, z



rotating frame:

coordinates x’, y’, z’
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in solids and in solutions of high polymers: T1>>T2

T2 is affected by molecular motion at the Larmor frequency 

and low-frequency motions around 102-103 Hz

non-viscous liquids T1 = T2

T1 sensitive to motions 5-500 MHz*)

T1 is sensitive to motions in the tens kHz-range

13C-Relaxations

*) short range, high frequency segmental motions, local environment is reflected
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E = h =w0 h/2 =  h/2 B 0

N = N exp(-  kbT) 

DE(B0=14.1T) @ 0.5 J
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nuclei with a spin quantum number I *)  

angular momentum J = ħ {I (I+1)}1/2

magnetic moment mI = I, I-1, I-2…0…-I    (2I+1) states

nuclear magnetic moment (z-component) µz = **) h/2 mI

energy of the state: E = µz B0 =  - h/2 mI B0

Larmor-frequency: 0 = 20 =  B0 mI

an ensemble of isolated spins I =  1/2

in an external field B0 split up into two states  (lower) and  (higher)

energy difference: E = E-E=h0= h/2 0=  h/2 B0

in an external field B0: 

*) integers are Bosons others are Fermions

**) (experimental) magnetogyric ratio
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B =  H

B = magnetic flux density (induction) [T]*)

H = magnetic field strength [A m-1]

 = permeability

B or H ?? A question of faith

T = kg s-2 A-1 = V s m-2 =104 G

H0























m
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B1

DE=mB0=w0 h/2 (spin =1/2 nuclei)



Q

w0



The tilt angle alpha is caused by thermal disalignement of the magnetic moments of the nuclei










_1130511048.ppt


only the “inhomogeneous”contribution of the T2is refocus= sed

the result

of the “true” T2-process is not re-focussed

the echo decays according to the true T2













































































90°-pulse





dephasing

slow

fast







180°-pulse













Re-focussing             re-focussed and echo









slow

fast







The reason is that a fast dephasing spin does not need to remain fast and a slow not slow. Carr-Purcell-Meiboom-Gill sequence uses several 180° pulses and observes the echo intensity
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Self-diffusion 

Spin-echo experiment

Hahn-echo pulse sequence

aquisition
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 = diffusion time

		 = gradient pulse length

		 = magnetogyric ratio



g = gradient strength

E = signal amplitude

unrestricted diffusion

D = diffusion coefficient

Rh = apparent hydrodynamic radius

 = viscosity of the pure solvent

r2 = mean-square diffusion length

Stokes-Einstein

Einstein-Smoluchowsky
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Broad lines

narrow is beautiful

…but line shape can also tell us a lot
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“The concept of the rotating frame is of paramount importance in 

NMR-spectroscopy. For almost all classical descriptions of NMR-

experiments are described using this frame of reference” 

						D. E. Traficante

Q

the frame is rotating with

the frequency of the applied

rf-field

a nucleus with the Larmor frequency

equal to the rotation of the frame is

static with respect to the frame
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the original focussed and in-phase in the x-y plane rotating magnetisation

decreases by two effects:



		interaction with the environment (“the lattice”) 

		Relaxation time T1 (spin-lattice relaxation, longitudinal relaxation)





		interaction with neighbouring spins (dephasing) 

		Relaxation time T2 (spin-spin relaxation, transversal relaxation)



Mz(t)-Mz(t=0) ~ exp [-t/T1]

My(t)-My(t=0) ~ exp [-t/T2]

the “effective” T2 (T2*) is responsible for the line broadening (transversal relaxation + inhomogeneous field broadening):

1/2= 1/(T2*)

1/2= line-width at ½ of the peak-height [Hz]

T1 is the longitudinal relaxation time in the rotating frame. T1  >T1 
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		type of experiment		X-axis		Y-axis		information

		heteronuclear J-resolved		dC		JCH		heteronuclear coupling constants

		homonuclear J-resolved		dH		JHH		homonuclear J and d

		heteronuclear chemical shift		dC		dH		correlation of dH and dC


		COSY		dC		dH		correlation of all scalar coupling interactions

		NOESY		dH, JHH		dH, JHH		spatial proximity of non-
bonded protons

		INADEQUATE		dX		dA + dX		heteronuclear connecti-
vities
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The total Hamilton operator is given by the sum of the individual interactions:

 

 = z + q + dd +  + k + J

 

z  = zeeman interaction with the external magnetic field (constant term)

q  = quadrupol interaction

dd = direct dipolar interaction

  = magnetic shielding (chemical shift) reflects the chemical environment

k  = knight shift

J  = indirect coupling



z   q   dd     k   J 
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2-dimensional*) NMR

*) and higher

		   correlated 2D-NMR

		   exchange 2D-NMR

		   resolved 2D- NMR 



molecular connectivities, distances

interactions

In fact projections (contour plots) of 3D-spectra



The many possible experiments can be categorised as:

molecular motion, environment

Advantage over e. g. decoupling: no loss of information, just unravelling

of overlapping signals 
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COSY-experiment

Evolution: 

-t1- -t2

diagonal: all auto-correlated H

off-diagonal: cross-correlated H with another H, shows connectivities

protons arrange according to their phases

controlled by their individual chemical shift



sampling of the magnetization 

components
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The off-diagonal (cross-peaks) indicate

that the nuclei A and B are geometrically

closer than about 0.5 nm.



The density of cross-peaks can be fairly

high in real spectra (e.g.: proteins). 

In this case further dimensions can help

to resolve the interactions 



Combined with molecular modelling and

Conformation-energy studies the distance

Information can lead to 3-dimensional

Molecule structures in solution

Parella T, Sánchez-Fernando F, Virgili A (1997) J Magn Reson 125, 145 
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2D-Experiments can be designed to

		separate different interactions (shifts, couplings)



		Correlate transitions of coupled spins 



		Study dynamic processes (chemical exchange, cross-relaxation, 



  transient Overhauser effects, spin diffusion…)
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2D-spectra, if the spins are modulated

By spin-spin, chemical shift or dipole-dipole

Interactions during the evolution time

Coupling resolved spectra:

	y- axis coupling information

	x- axis  chem shift information

Coupling correlated spectra:

	y- axis chem shift information

	x- axis  chem shift information

correlated through homo-or heteronuclear

or dipolar coupling

Exchange spectra:

	 y- axis chem shift information

	 x- axis chem shift information

correlated through chemical exchange, 

conformational or motional effects, or

Overhauser effects from non-bonded H

J-coupling
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“Advances in liquid and solid state NMR techniques have so changed 

 the picture that it is now possible to obtain detailed information about



		 the mobilities of specific chain units

		 domain structures

		 end groups

		 run numbers

		 number-average molecular weights

		 minor structure aberations





In many synthetic and natural products at a level of 

1 unit per 10,000 carbon atoms and below”



J. C. Randall (eds.) NMR and Macromolecules, ACS-Symp. Ser. 247, 

American Chemical Society, Washington DC (1984), p. 245
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		The properties and motions of a spin system are represented by the 



Hamilton Operator H*)

*) in fact in NMR a redued Hamiton spin operator Hs is sufficient

		When H contains contributions of different physical origin 



(e. g.: chemical shift, dipolar or scalar couplings…) 

it is sometimes possible 

to separate these effects in a multi-dimensional plot

preparation

evolution

mixing

detection

		system is prepared in a coherent non-equilibrium state



		System evolves under the influence 



        of what ever modification (pulse sequence)

		Transformation into transversal magnetization



		Measurement of the transversal magnetization





















collect incremented FIDs








_1130508718.ppt


		   spin-echo pulses

		   selective scalar-spin decoupling

		   off-resonance decoupling

		   selective 13C-excitation

		   selective multiplet acquisitation (DANTE)

		   signal enhancement by polarisation tranfer

		   proton multiplicity on carbons (INEPT, DEPT)

		   C-C connectivity (INADEQUATE)

		   2-Dimensional (and higher) NMR (COSY, NOESY)





“Many of the substantial improvements in NMR are the result of the 

spin gymnastics that can be orchestrated by the spectroscopist”*) on

the Hamiltonean with a mystic zoo of weird pulse sequences**)

*)   T. C. Farrar 

**)M. Hess
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Characterization in the Solid State

	Chain conformation in the solid state

	Solid-solid transitions

	Organization in the solid state

	In multi-phase polymers

	Orientation

	Imaging

Dynamics of Polymers in the Solid State

	Semicristalline polymers

	Amorphous polymers



Polymer Systems

	Polymer blends and miscibility

	Multiphase systems
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Decoupling of heteronuclear spin coupling causes the

         NUCLEAR OVERHAUSER EFFECT (NOE)

Decoupling 1H-13C         saturates 1H and changes the 13C-spin population

excess 13C in the lower level compared 

with the equilibrium distribution 

more energy is absorbed

DE = 1 + (gH/2gC)

NOE depends on the specific resonance       makes quantification difficult

better S/N
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		   comparison of the chemical shift with known model-compounds

		   calculation of 13C-shifts by the (additive) increment method

		   synthesis of polymers with known structure or compositional features

		   selective 13C-enrichment

		   comparison of experimental results with calculated intensities 



    (simulation of the polymerisation kinetics)

		   determination of C-H bonds (INEPT)*, C-C bonds (INADEQUATE)*

		   2-dimensional techniques



* These are specific pulse sequences for particular spectral editing
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2H lineshape













CSA lineshape



dipolar lineshape

T1r



2H echo

dynamic range

measured by

different NMR-techniques
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Material properties of polymers:

		Chemical structure

		Configuration

		Conformation

		Physical Structure

		Dynamics













in the liquid 

and 

in the solid state
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NMR can provide information about:

		Polymers in Solution



		The microstucture of polymer chains

		Resonance assignement

		regioisomerism

		Stereochemical configuration

		Geometric isomerism

		Isomerism in diene polymers

		Asymmetric centres in the main chain

		Branching and cross-linking

		End groups

		Configurational statistics

		Copolymerization sequences

		Chain conformation in solution

		Intermolecular association
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1H: 	 natural abundance 99.9844 %

		relative sensitivity 1

		chemical shift range 10 ppm

		1H-1H-spin-spin coupling       chemical environment

		chemical structure, regiochemistry, stereochemistry,

		conformation 

		13C:	 natural abundance  1.108%

		relative sensitivity 1.59´10-2

		Chemical shift range 250 ppm

		long relaxation times 

		sensitive to subtle changes in the near electronic

		environment but insensitive for long-range inter-

		actions (solvent effects, diamagnetic anisotropy of 

		neighbouring groups)

		no homonuclear coupling

		Separate resonance for every C in a molecule
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